Litter Breakdown and Microbial Succession on Two Submerged Leaf Species in a Small Forested Stream
نویسندگان
چکیده
Microbial succession during leaf breakdown was investigated in a small forested stream in west-central Georgia, USA, using multiple culture-independent techniques. Red maple (Acer rubrum) and water oak (Quercus nigra) leaf litter were incubated in situ for 128 days, and litter breakdown was quantified by ash-free dry mass (AFDM) method and microbial assemblage composition using phospholipid fatty acid analysis (PLFA), ribosomal intergenic spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), and bar-coded next-generation sequencing of 16S rRNA gene amplicons. Leaf breakdown was faster for red maple than water oak. PLFA revealed a significant time effect on microbial lipid profiles for both leaf species. Microbial assemblages on maple contained a higher relative abundance of bacterial lipids than oak, and oak microbial assemblages contained higher relative abundance of fungal lipids than maple. RISA showed that incubation time was more important in structuring bacterial assemblages than leaf physicochemistry. DGGE profiles revealed high variability in bacterial assemblages over time, and sequencing of DGGE-resolved amplicons indicated several taxa present on degrading litter. Next-generation sequencing revealed temporal shifts in dominant taxa within the phylum Proteobacteria, whereas γ-Proteobacteria dominated pre-immersion and α- and β-Proteobacteria dominated after 1 month of instream incubation; the latter groups contain taxa that are predicted to be capable of using organic material to fuel further breakdown. Our results suggest that incubation time is more important than leaf species physicochemistry in influencing leaf litter microbial assemblage composition, and indicate the need for investigation into seasonal and temporal dynamics of leaf litter microbial assemblage succession.
منابع مشابه
Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream.
Since species loss is predicted to be nonrandom, it is important to understand the manner in which those species that we anticipate losing interact with other species to affect ecosystem function. We tested whether litter species diversity, measured as richness and composition, affects breakdown dynamics in a detritus-based stream. Using full-factorial analyses of single- and mixed-species leaf...
متن کاملLand use effects on leaf litter breakdown in low-order streams draining a rapidly developing tropical watershed in Puerto Rico.
Land use has an important role influencing stream ecosystem processes, such as leaf litter breakdown. Here, we assessed rates of leaf litter breakdown in low-order tropical streams draining forest, agriculture, and urban land uses in Puerto Rico. To measure leaf breakdown rates, we placed litter bags made of coarse mesh in nine streams, three for each land use type. At each stream, we measured ...
متن کاملNutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up eVects via heterotrophic pathways
Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to longterm nutrient enrichment in a forested, headwater stream. Our study design consisted of 2 years of pretreatment data in a reference and treatment stream and 2 years of continuous nitrogen (N) + phosph...
متن کاملLitter supply as a driver of microbial activity and community structure on decomposing leaves: a test in experimental streams.
Succession of newly created landscapes induces profound changes in plant litter supplied to streams. Grasses dominate inputs into open-land streams, whereas tree litter is predominant in forested streams. We set out to elucidate whether the activity and structure of microbial communities on decomposing leaves are determined by litter quality (i.e., grass or tree leaves colonized) or whether cha...
متن کاملLeaf preference and choice of the macroinvertebrate shredder Potomonautes emini in Gombe Stream National Park, Tanzania
Stream ecosystems rely heavily on the input of allochthonous organic matter, such as leaves, as a primary source of nutrients. Within the macroinvertebrate community, shredders are an essential component in the process of leaf litter breakdown in streams and are largely responsible for the conversion of coarse particulate organic matter (CPOM) into fine particulate organic matter (FPOM) (Rincon...
متن کامل